
 The art direction on Serpendipity called for extreme, cartoony animation that
required a lot of stretching and bending for smear frames. I developed these setups to
combat some of the issues that pop up when adding these features to the IK spline
setups that AFR teaches. These setups add in more flexibility to the rigs that can better
mimic 2D drawn animation with stretch, squash, and smear frames, as well as add extra
controls to tweak silhouette. The stretchy squashy setup could have been added to any
ribbon spline for volume preservation (Snakes and Limbs). There is also the ability to
add a switch to turn the volume preservation on or off through the use of an attribute
connected to blend color nodes intercepting the scale of the joints. However, this wasn’t
necessary as it wasn’t as noticeable as the spine and added unnecessary details to
keep track of by our animators.

Stretchy Squashy Ribbon Spline

This workflow is to replace the IK spline setup taught in AFR and aims to work in tandem with
the rest of the rigging setups taught in AFR. The advantage of a ribbon over the IK spline setup
in AFR is there isn’t the possibility of flipping caused by Maya’s up vector in the IK spline when
turning the character around inside of the all_anim.

1. Create the ribbon spline with controls as usual. I’ll refer to the nurbs plane as
back_ribbon_plane and the joints as back_#_jnt.

2. Select one of the isoparms along the length of back_ribbon_plane.

3. Use MEL code "arclen -ch 1;" to create a curveInfo node for the isoparm.

5. In the node editor, with back_ribbon_plane selected, find curveFromSurfaceIso1 that is
connected to the back_ribbon_planeShape node. If nothing is appearing in the node editor, click

on the Input and Output Connections button at the top.

6. Click on curveFromSurfaceIso1 and in the attribute editor, change Isoparm Value to 0.500.
This makes it so that the isoparm we’re going to be getting data from is at the center of the
ribbon spline where the joints are constrained to the nHair.

7. Find and click on curveInfo1, it should be connected to curveFromSurfaceIso1, and rename it
to back_curveInfo this carries the Arc Length value that we need to keep track of to see when
the spine is stretched or squashed.

8. Create a multiplyDivide node and rename it to normalized_backScale. To create nodes
quickly in the node editor, hit Tab and type in the node you want to create.
.

9. Attach Arc Length from back_curveInfo to Input 1X on normalized_backScale by clicking and
dragging the output connection to the input connection on the other node . You can expand the
nodes you have selected by clicking on the Show Attributes buttons at the top so that the

attributes you need are visible.

10. In the attribute editor of normalized_backScale, change the operation to Divide. Change
Input 2X to the original value of the Arc Length in t-pose (Gordon’s is 7.833). This will divide
whatever the current length of the spine is by the original length to get the new value for the
scale of the joints.

11. Check the orientation of the back_#_jnts and see which axis is pointing up. More than likely
it is Y as they are oriented to the world axis and constrained to the hair follicles.

12. In the node editor, attach the Output X from normalized_backScale to the Y scale (or
whatever axis is pointing up) of back_#_jnts 2-8 on the back. Leaving out the first and ninth
joints will keep the hips and shoulders at a consistent size and keep the volume preservation
only in the spine.

13. The spine should now stretch and squash equally. To keep volume preservation we need to
scale the remaining two axis, X and Z, by 1/(sqrt(ScaleY)).

14. Create another multiplyDivide node and rename it to sqrt_backScale.

15. Attach Output X from normalized_backScale to Input 1X on sqrt_backScale.

16. Set the operation to Pow and Input 2X to 0.500. This will give us the square root.

17. Create another multiplyDivide node and rename it inversed_backScale. Set the operation to
divide

18. Attach Output X from sqrt_backScale to Input 2X on inversed_backScale and set the value
of Input 1X to 1.000. The Output X of inversed_backScale is the value we need to plug into the
X and Z scale of the back_#_jnts to have volume preservation.

19. Attach Output X from inversed_backScale to the Scale X and Z of back_#_jnts 2-8 on the
back.

20. Make sure the stretch and squash is working with all of the controls.

21. Now we need to make this scalable by the all_anim. To do this we’re going to take the
normalized_backScale value and divide it by the globalScale value we’re going to make on the
all_anim group. (Follow AFR for setting up the all_anim group and organization of the outliner
before continuing)

22. Once the outliner is organized and the all_anim group is made with globalScale attribute,
make sure the under the doNotTouch_grp, that both back_follicle_grp and back_ribbon_plane
both have Inherit Transforms UNCHECKED. The rig should now work when you move the
all_anim around but not when you scale it.

23. To fix this, we need to divide the normalized_backScale value by the globalScale before
feeding it into the joints and the sqrt and inverse nodes we made.

24. Create a new multiplyDivide node, rename it to globalScale_div and set the operation to
divide.

25. In your outliner click on the all_anim group and middle mouse drag it into the node editor to
create a node for it.

26. Attach the globalScale into Input 2X of globalScale_div.

27. Break all of the connections between normalized_backScale output X and attach it only to
Input 1X of globalScale_div.

28. Attach Output X of globalScale_div to Scale Y of back_#_jnts 2-8 and to Input 1X of
sqrt_backScale.

29. Once all of the connections are made the rig should be scalable and moveable with a
stretchy squashy ribbon spline.

Bendy Ribbon Limbs

This tutorial assumes that you have followed AFR and your characters arms are horizontal
along the X axis and legs are vertical along the Y axis in a standard biped rig. If applying this
bendy setup to different limbs (i.e. Quadrupeds, Insects, Crustaceans) adjustments to the aim
constraint settings or overall setup will most likely be required. There will also be mention of
certain scripts provided by AFR such as #### rename (hash rename).

1. Go to Create > NURBS Primitives > Plane Option Box. Reset settings and create a
plane with these options:

a. Width: 1
b. Length: 17
c. U patches: 1
d. V patches: 17

2. Scale the plane to roughly the same length as the arm/leg and position it near the arm or
leg. The position and scale being exact isn’t important because the control joints that
move the ribbon plane will be constrained and moved to the joints in the arm/leg.

3. Under the FX menu set (F5) go to nHair > Create Hair Option Box. Reset settings and
create a hair system with these options:

a. Output: NURBS curves
b. U count: 1
c. V count: 17

4. Delete hairSystem1, hairSystem1OutputCurves, and nucleus1. Shift expand the

hairSystem1Follicles group and under each follicle delete the curve nodes.

5. Rename your ribbon plane, follicle group, and follicles accordingly with left or R and arm
or leg. Use #### rename from AFR for the follicles. (e.x. L_arm_ribbon_plane,
L_arm_follicle_grp, and L_arm_#_follicle)

6. Create one joint anywhere in the viewport. Duplicate it 16 times so you now have 17
joints.

7. Use #### rename to name them accordingly. (e.x. L_arm_#_skin_jnt)

8. Select the first follicle, then the first joint and under the rigging menu set (F3) go to
Constrain > Parent Option Box. Make sure maintain offset is off.

9. Constrain all the joints to the corresponding follicle by selecting the follicle, then joint and
hitting G.

10. Select all the joints and group them together. Rename the group accordingly. (e.x.
L_arm_ribbon_jnt_grp)

11. Select joints 1, 5, 9, 13, 17 and duplicate. Set EACH JOINT Rotate values to 0. Delete
the constraints under the duplicated joints, name them according to where they line up
on the limb, and change their rotation orders to ZXY. (e.x. L_arm_shldr_bend_jnt,
L_upArm_bend_jnt, L_arm_elbow_bend_jnt, L_lowArm_bend_jnt, and
L_arm_hand_bend_jnt)

12. Create a control curve for EACH of these bend joints with the same pivot. Parent the
bend joints under this control curve.

13. Create a group node over EACH of the control curves with the same pivot with the suffix
_const.

14. Change the control curve and joints’ rotation orders to ZXY.

15. Now it’s time to make the bend joints control the nurbs planes.

16. Select all of the bend joints and then the nurbs plane. Under the rigging menu set (F3)
go to Skin > Bind Skin.

17. Select the nurbs plane, hold right click, and go to Paint Skin Weights Tool. You want to
paint the skin weights so that the knee/elbow area has an influence of 1 on the CVs
around the skin joint in the knee/elbow area and no influence above that. This will keep a
sharp angle in rotation that you would normally see without a bendy ribbon.

18. Now that the ribbon plane is set up we want to set up the constraint system to make this
plane act like an arm or leg. It’s important to pay attention to the bolded _anim or
_const as selecting the wrong ones will change functionality or create dependency
loops. The aim constraint settings are different for the arms and legs so I will separate
out those steps for each.

19. In the outliner, select L_leg_knee(arm_elbow)_anim, L_leg_hip(arm_shldr)_anim, then
L_upLeg(upArm)_bend_const. Go to Constrain > Point Option Box. Make sure maintain
offset is OFF.

20. In the outliner, select L_leg_knee(arm_elbow)_anim, L_leg_ankle(arm_wrist)_anim,

then L_lowLeg(lowArm)_bend_const. Hit G.

21. ARMS: In the outliner, select L_arm_elbow_anim then L_lowArm_bend_const. Go to
Constrain > Aim Option Box. Reset Settings and change them as follows:

● Maintain offset is OFF.
● Aim Vector: -1, 0, 0 (For the right side use: 1, 0, 0)
● Up Vector: 0, 1, 0
● World up type: Object rotation up
● World up vector: 0,1 , 0
● World up object: L_arm_elbow_bend_jnt

 LEGS: In the outliner, select L_leg_knee_anim then L_lowLeg_bend_const. Go to
Constrain > Aim

Option Box. Reset Settings and change them as follows:
● Maintain offset is OFF.
● Aim Vector: 0, 1, 0
● Up Vector: 1, 0, 0
● World up type: Object rotation up
● World up vector: 1, 0 , 0
● World up object: L_leg_knee_bend_jnt

22. ARMS: In the outliner, select L_arm_elbow_anim then L_upArm_bend_const. Go to

Constrain > Aim Option Box.Reset Settings and and change them as follows:
● Maintain offset is OFF.
● Aim Vector: 1, 0, 0 (For the right side use: -1, 0, 0)
● Up Vector: 0, 1, 0
● World up type: Object rotation up

● World up vector: 0,1 , 0
● World up object: L_arm_elbow_bend_jnt

 LEGS: In the outliner, select L_leg_knee_anim then L_upLeg_bend_const. Go to
Constrain > Aim

Option Box. Reset settings and change them as follows:
● Maintain offset is OFF.
● Aim Vector: 0, -1, 0
● Up Vector: 1, 0, 0
● World up type: Object rotation up
● World up vector: 1, 0 , 0
● World up object: L_leg_knee_bend_jnt

23. ARMS: In the outliner, select L_arm_elbow_anim then L_arm_wrist_const. Go to
Constrain > Aim Option Box. Reset settings and and change them as follows:

● Maintain offset is OFF.
● Aim Vector: -1, 0, 0 (For the right side use: 1, 0, 0)
● Up Vector: 0, 1, 0
● World up type: Object rotation up
● World up vector: 0,1, 0
● World up object: L_arm_elbow_bend_jnt

LEGS: In the outliner, select L_leg_knee_anim then L_ankle_bend_const. Go to

Constrain > Aim
Option Box. Reset settings and change them as follows:

● Maintain offset is OFF.
● Aim Vector: 0, 1, 0
● Up Vector: 1, 0, 0
● World up type: Object rotation up
● World up vector: 1, 0 , 0
● World up object: L_leg_knee_bend_jnt

24. Make sure when moving the knee/elbow anim that the other bend controls are following
along properly like and arm or leg would and that equal distances are kept between
controls. Like this:

25. Now it’s time to attach it to the arm/leg.

26. Select your main L_upLeg(Arm) joint (the hip/shldr joint) then
L_leg_hip(arm_shldr)_bend_const and go to Constrain > Point Option Box. Make sure
Maintain Offset is OFF.

27. Select your main L_lowLeg(Arm) joint (elbow/knee), then L_knee(elbow)_bend_const
and go to Constrain > Parent Option Box. Make sure Maintain Offset is OFF. If this
constraint flips the ribbon at all: delete the constraint, zero out the rotations on the
_const group, and redo the parent constraint with Maintain Offset ON.

28. Repeat step 26 for L_leg_ankle(wrist)_const. IMPORTANT DIFFERENCE: For the
wrists, change the leader in the point constraint to L(R)_hand_base_const. This is
parented under the side and bend locators for the hands.

29. Move around your leg or arm and use some of the switch features to make sure the
bend controls are following along correctly. Also check that the aim constraints are
rotating the bend controls properly when the character turns around within the all_anim.

30. You’ll notice that rotating the wrist in FK and IK mode does not properly twist the forearm
as the L(R)_hand_base_const does not actually rotate in the AFR setup. This is purely
for the translations of the hand, not the orientation. To remedy this, we need to add an
extra group in the hierarchy of the elbow and hand bend controls and make some
connections between the X rotations of a few things for the proper twist.

31. In the outliner, select L(R)_lowArm_bend_anim and hit Ctrl+G. Rename the group to
L(R)_lowArm_bend_twist_orient. Make sure the pivot of the new group is the same as
L(R)_lowArm_bend_anim.

32. In the outliner, select L(R)_arm_hand_bend_anim and hit Ctrl+G. Rename the group to

L(R)_arm_hand_bend_twist_orient. Make sure the pivot of the new group is the same
as L(R)_arm_hand_bend_anim.

33. In the outliner, select L_lowArm_bend_twist_orient, L_arm_hand_bend_twist_orient,
R_lowArm_bend_twist_orient, R_arm_hand_bend_twist_orient, L_hand_jnt, and
R_hand_jnt.

34. Open the node editor and load the input and output connections of the selected nodes.

35. In the node editor, create a multiplyDivide node and rename it to
lowArm_bend_twist_orient_div. Set the operation to Divide and change Input 2X and 2Y
to 2.

36. In the node editor, take the Rotate X value from L(R)_hand_jnt and connect it to the
Rotate X of L(R)_arm_hand_bend_twist_orient.

37. In the node editor, take the Rotate X value from L_arm_hand_bend_twist_orient and
connect it to Input 1X.

38. In the node editor, take the Rotate X value from R_arm_hand_bend_twist_orient and
connect it to Input 1Y.

39. In the node editor, take the Output X from lowArm_bend_twist_orient_div and connect
it the Rotate X of L_lowArm_bend_twist_orient.

40. In the node editor, take the Output Y from lowArm_bend_twist_orient_div and connect
it the Rotate X of R_lowArm_bend_twist_orient.

41. This set of nodes we just made should take the rotate X value from the wrist, apply it to
the new group above the wrist bend controller, divide that value in half, and apply it to
the new group over the lower arm bend controller for the proper forearm twist. This
works under the hierarchy that we set up with constraints to get the ribbon plane to act
like a limb, but over the actual controllers so that animation can still be done on them
while they work properly.

42. A similar setup is needed for the upper arm as well to mimic the twist of the entire arm
from the shoulder since the elbow is only a hinge joint. This setup will flip the shoulder
when moving the arm in front of the chest past 90 degrees in either direction but a
countermeasure is included called untwist.

43. In the outliner, select L(R)_arm eblbow_bend_anim then select
L(R)_arm_shldr_bend_const. Create an aim constraint with the following settings:

● Maintain offset is OFF.
● Aim Vector: 1, 0, 0 (-1, 0, 0 for right)
● Up Vector: 0, 0, 1

● World up type: Object rotation up
● World up vector: 0, 0 , 1
● World up object: L(R)_shoulder_end_jnt (end joint of the clavicle setup)

44. Create a group over the L(R)_upArm_bend_anim. Make sure the pivot is the same and

name it with the suffix _rot_grp.

45. Create a group over L(R)_arm_shldr_bend_anim. Make sure te pivot is the same and
name it with the suffix _rot_grp.

46. Select L(R)_upArm_bend_rot_grp and load input and output connections in the node
editor.

47. Create a multiplyDivide node and name it L(R)_upArm_twist_div. Change the operation
to divide and Input 2X to 2. (You may find you have to use -2 here to have the upArm
control rotate the correct direction when twisting.)

48. Connect the Rotate X of L(R)_upArm_jnt (Shoulder joint) to Input 1X of
L(R)_upArm_twist_div.

49. Connect Output X of L(R)_upArm_twist_div to the ROtate X of
L(R)_upArm_bend_rot_grp.

50. This solves the twisting of of the upper arm while the shoulder stays upright, but we still
need to add the untwist feature to counter the flipping issue.

51. On your shoulder control (the clavicle controller) create a new attribute that’s a float with
no limits called Untwist.

52. Connect Untwist to the Rotate X of L_arm_shldr_bend_rot_grp. For the right side you
will need to create a multiplyDivide node that makes the value negative in between the
connection or you can also use Set Driven Key with linear post/pre infinity to control the
untwist.

53. The untwist attribute can unflip the shoulder with a value of 180 as well as helps with
certain poses if the shoulder should twist a little bit.

54. To incorporate this into the entire rig hierarchy, make sure Inherit Transforms is OFF on

the ribbon plane and follicle group for each limb.

55. Group all the _const groups together and rename it accordingly. This group should be a
child of the same group the 17 skin joints are in. (e.x. L_arm_ribbon_jnt_grp)

56. Place the follicle group, ribbon plane, and joint group under the doNotTouch group of the
corresponding limb.

